flink 1.9.0 StreamTableEnvironment 编译错误

classic Classic list List threaded Threaded
6 messages Options
Reply | Threaded
Open this post in threaded view
|

flink 1.9.0 StreamTableEnvironment 编译错误

star
大家好,
我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,

import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
import org.apache.flink.table.api.scala.StreamTableEnvironment
import org.apache.flink.table.planner.expressions.StddevPop
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerConfig

object StreamingJob {
def main(args: Array[String]) {
val kafkaTopic = "source.kafka.topic"
val jobName ="test"
val parallelism =1
val checkPointPath ="checkpoint/"
val kafkaBrokers =""

// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(parallelism)
env.enableCheckpointing(10000)
env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
//env.setStateBackend(new FsStateBackend(checkPointPath))


val tableEnv = StreamTableEnvironment.create(env)

提示有多个实现:

下面是pom文件:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime-blink_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.9.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>


Reply | Threaded
Open this post in threaded view
|

Re: flink 1.9.0 StreamTableEnvironment 编译错误

tison
试试把

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment

换成

import org.apache.flink.table.api.scala.StreamExecutionEnvironment

应该是意外 import 了不同包下的同名类的缘故

Best,
tison.


ddwcg <[hidden email]> 于2019年8月26日周一 上午11:12写道:

> 大家好,
> 我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,
>
> import org.apache.flink.streaming.api.CheckpointingMode
> import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
> import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
> import org.apache.flink.streaming.util.serialization.SimpleStringSchema
> import org.apache.flink.table.api.scala.StreamTableEnvironment
> import org.apache.flink.table.planner.expressions.StddevPop
> import org.apache.kafka.clients.consumer.ConsumerConfig
> import org.apache.kafka.clients.producer.ProducerConfig
>
> object StreamingJob {
>   def main(args: Array[String]) {
>     val kafkaTopic = "source.kafka.topic"
>     val jobName ="test"
>     val parallelism =1
>     val checkPointPath ="checkpoint/"
>     val kafkaBrokers =""
>
>     // set up the streaming execution environment
>     val env = StreamExecutionEnvironment.getExecutionEnvironment
>     env.setParallelism(parallelism)
>     env.enableCheckpointing(10000)
>     env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
>     env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
>     env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
>     //env.setStateBackend(new FsStateBackend(checkPointPath))
>
>
>     val tableEnv = StreamTableEnvironment.create(env)
>
>
> 提示有多个实现:
>
> 下面是pom文件:
>
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-scala_${scala.binary.version}</artifactId>
>    <version>${flink.version}</version>
>    <scope>compile</scope>
> </dependency>
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
>    <version>${flink.version}</version>
>    <scope>compile</scope>
> </dependency>
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
>    <version>${flink.version}</version>
>    <scope>provided</scope>
> </dependency>
> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink -->
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-table-runtime-blink_2.11</artifactId>
>    <version>1.9.0</version>
> </dependency>
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-connector-kafka_2.11</artifactId>
>    <version>1.9.0</version>
> </dependency>
> <dependency>
>    <groupId>org.apache.flink</groupId>
>    <artifactId>flink-table-common</artifactId>
>    <version>${flink.version}</version>
>    <scope>provided</scope>
> </dependency>
>
>
>
>
Reply | Threaded
Open this post in threaded view
|

Re: flink 1.9.0 StreamTableEnvironment 编译错误

star
感谢您的回复,确实是这个原因。但是后面注册表的时候不能使用 Expression
总是感觉 java api 和scala api有点混乱了


在 2019年8月26日,11:22,Zili Chen <[hidden email]> 写道:

试试把

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment

换成

import org.apache.flink.table.api.scala.StreamExecutionEnvironment

应该是意外 import 了不同包下的同名类的缘故

Best,
tison.


ddwcg <[hidden email]> 于2019年8月26日周一 上午11:12写道:

大家好,
我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,

import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
import org.apache.flink.table.api.scala.StreamTableEnvironment
import org.apache.flink.table.planner.expressions.StddevPop
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerConfig

object StreamingJob {
 def main(args: Array[String]) {
   val kafkaTopic = "source.kafka.topic"
   val jobName ="test"
   val parallelism =1
   val checkPointPath ="checkpoint/"
   val kafkaBrokers =""

   // set up the streaming execution environment
   val env = StreamExecutionEnvironment.getExecutionEnvironment
   env.setParallelism(parallelism)
   env.enableCheckpointing(10000)
   env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
   env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
   env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
   //env.setStateBackend(new FsStateBackend(checkPointPath))


   val tableEnv = StreamTableEnvironment.create(env)


提示有多个实现:

下面是pom文件:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-scala_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>compile</scope>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>compile</scope>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink -->
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-runtime-blink_2.11</artifactId>
  <version>1.9.0</version>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka_2.11</artifactId>
  <version>1.9.0</version>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-common</artifactId>
  <version>${flink.version}</version>
  <scope>provided</scope>
</dependency>





Reply | Threaded
Open this post in threaded view
|

Re: flink 1.9.0 StreamTableEnvironment 编译错误

tison
不应该呀,我看到仍然有 

def registerDataStream[T](name: String, dataStream: DataStream[T], fields: Expression*): Unit

这个方法的,你能提供完整一点的上下文和报错吗?

Best,
tison.


ddwcg <[hidden email]> 于2019年8月26日周一 上午11:38写道:
感谢您的回复,确实是这个原因。但是后面注册表的时候不能使用 Expression
总是感觉 java api 和scala api有点混乱了


在 2019年8月26日,11:22,Zili Chen <[hidden email]> 写道:

试试把

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment

换成

import org.apache.flink.table.api.scala.StreamExecutionEnvironment

应该是意外 import 了不同包下的同名类的缘故

Best,
tison.


ddwcg <[hidden email]> 于2019年8月26日周一 上午11:12写道:

大家好,
我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,

import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
import org.apache.flink.table.api.scala.StreamTableEnvironment
import org.apache.flink.table.planner.expressions.StddevPop
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerConfig

object StreamingJob {
 def main(args: Array[String]) {
   val kafkaTopic = "source.kafka.topic"
   val jobName ="test"
   val parallelism =1
   val checkPointPath ="checkpoint/"
   val kafkaBrokers =""

   // set up the streaming execution environment
   val env = StreamExecutionEnvironment.getExecutionEnvironment
   env.setParallelism(parallelism)
   env.enableCheckpointing(10000)
   env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
   env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
   env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
   //env.setStateBackend(new FsStateBackend(checkPointPath))


   val tableEnv = StreamTableEnvironment.create(env)


提示有多个实现:

下面是pom文件:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-scala_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>compile</scope>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>compile</scope>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
  <version>${flink.version}</version>
  <scope>provided</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink -->
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-runtime-blink_2.11</artifactId>
  <version>1.9.0</version>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka_2.11</artifactId>
  <version>1.9.0</version>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-common</artifactId>
  <version>${flink.version}</version>
  <scope>provided</scope>
</dependency>





Reply | Threaded
Open this post in threaded view
|

Re: flink 1.9.0 StreamTableEnvironment 编译错误

Jark
Administrator
Hi,

关于 Expression的问题,你需要额外加入 import org.apache.flink.table.api._ 的 import。

See release note for more details: https://ci.apache.org/projects/flink/flink-docs-release-1.9/release-notes/flink-1.9.html#scala-expression-dsl-for-table-api-moved-to-flink-table-api-scala <https://ci.apache.org/projects/flink/flink-docs-release-1.9/release-notes/flink-1.9.html#scala-expression-dsl-for-table-api-moved-to-flink-table-api-scala>

> 在 2019年8月26日,11:53,Zili Chen <[hidden email]> 写道:
>
> 不应该呀,我看到仍然有
>
> def registerDataStream[T](name: String, dataStream: DataStream[T], fields: Expression*): Unit
>
> 这个方法的,你能提供完整一点的上下文和报错吗?
>
> Best,
> tison.
>
>
> ddwcg <[hidden email] <mailto:[hidden email]>> 于2019年8月26日周一 上午11:38写道:
> 感谢您的回复,确实是这个原因。但是后面注册表的时候不能使用 Expression
> 总是感觉 java api 和scala api有点混乱了
>
>
>
>> 在 2019年8月26日,11:22,Zili Chen <[hidden email] <mailto:[hidden email]>> 写道:
>>
>> 试试把
>>
>> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
>>
>> 换成
>>
>> import org.apache.flink.table.api.scala.StreamExecutionEnvironment
>>
>> 应该是意外 import 了不同包下的同名类的缘故
>>
>> Best,
>> tison.
>>
>>
>> ddwcg <[hidden email] <mailto:[hidden email]>> 于2019年8月26日周一 上午11:12写道:
>>
>>> 大家好,
>>> 我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,
>>>
>>> import org.apache.flink.streaming.api.CheckpointingMode
>>> import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
>>> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
>>> import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
>>> import org.apache.flink.streaming.util.serialization.SimpleStringSchema
>>> import org.apache.flink.table.api.scala.StreamTableEnvironment
>>> import org.apache.flink.table.planner.expressions.StddevPop
>>> import org.apache.kafka.clients.consumer.ConsumerConfig
>>> import org.apache.kafka.clients.producer.ProducerConfig
>>>
>>> object StreamingJob {
>>>  def main(args: Array[String]) {
>>>    val kafkaTopic = "source.kafka.topic"
>>>    val jobName ="test"
>>>    val parallelism =1
>>>    val checkPointPath ="checkpoint/"
>>>    val kafkaBrokers =""
>>>
>>>    // set up the streaming execution environment
>>>    val env = StreamExecutionEnvironment.getExecutionEnvironment
>>>    env.setParallelism(parallelism)
>>>    env.enableCheckpointing(10000)
>>>    env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
>>>    env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
>>>    env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
>>>    //env.setStateBackend(new FsStateBackend(checkPointPath))
>>>
>>>
>>>    val tableEnv = StreamTableEnvironment.create(env)
>>>
>>>
>>> 提示有多个实现:
>>>
>>> 下面是pom文件:
>>>
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-scala_${scala.binary.version}</artifactId>
>>>   <version>${flink.version}</version>
>>>   <scope>compile</scope>
>>> </dependency>
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
>>>   <version>${flink.version}</version>
>>>   <scope>compile</scope>
>>> </dependency>
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
>>>   <version>${flink.version}</version>
>>>   <scope>provided</scope>
>>> </dependency>
>>> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink <https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink> -->
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-table-runtime-blink_2.11</artifactId>
>>>   <version>1.9.0</version>
>>> </dependency>
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-connector-kafka_2.11</artifactId>
>>>   <version>1.9.0</version>
>>> </dependency>
>>> <dependency>
>>>   <groupId>org.apache.flink</groupId>
>>>   <artifactId>flink-table-common</artifactId>
>>>   <version>${flink.version}</version>
>>>   <scope>provided</scope>
>>> </dependency>
>>>
>>>
>>>
>>>
>

Reply | Threaded
Open this post in threaded view
|

Re: flink 1.9.0 StreamTableEnvironment 编译错误

star
按照两位的方法修改后已经可以了,谢谢两位

> 在 2019年8月26日,12:28,Jark Wu <[hidden email]> 写道:
>
> Hi,
>
> 关于 Expression的问题,你需要额外加入 import org.apache.flink.table.api._ 的 import。
>
> See release note for more details: https://ci.apache.org/projects/flink/flink-docs-release-1.9/release-notes/flink-1.9.html#scala-expression-dsl-for-table-api-moved-to-flink-table-api-scala <https://ci.apache.org/projects/flink/flink-docs-release-1.9/release-notes/flink-1.9.html#scala-expression-dsl-for-table-api-moved-to-flink-table-api-scala>
>
>> 在 2019年8月26日,11:53,Zili Chen <[hidden email]> 写道:
>>
>> 不应该呀,我看到仍然有
>>
>> def registerDataStream[T](name: String, dataStream: DataStream[T], fields: Expression*): Unit
>>
>> 这个方法的,你能提供完整一点的上下文和报错吗?
>>
>> Best,
>> tison.
>>
>>
>> ddwcg <[hidden email] <mailto:[hidden email]>> 于2019年8月26日周一 上午11:38写道:
>> 感谢您的回复,确实是这个原因。但是后面注册表的时候不能使用 Expression
>> 总是感觉 java api 和scala api有点混乱了
>>
>>
>>
>>> 在 2019年8月26日,11:22,Zili Chen <[hidden email] <mailto:[hidden email]>> 写道:
>>>
>>> 试试把
>>>
>>> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
>>>
>>> 换成
>>>
>>> import org.apache.flink.table.api.scala.StreamExecutionEnvironment
>>>
>>> 应该是意外 import 了不同包下的同名类的缘故
>>>
>>> Best,
>>> tison.
>>>
>>>
>>> ddwcg <[hidden email] <mailto:[hidden email]>> 于2019年8月26日周一 上午11:12写道:
>>>
>>>> 大家好,
>>>> 我周末升级到了1.9.0,但是在初始化table env的时候编译不通过,请大家帮忙看看是什么原因,
>>>>
>>>> import org.apache.flink.streaming.api.CheckpointingMode
>>>> import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
>>>> import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
>>>> import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
>>>> import org.apache.flink.streaming.util.serialization.SimpleStringSchema
>>>> import org.apache.flink.table.api.scala.StreamTableEnvironment
>>>> import org.apache.flink.table.planner.expressions.StddevPop
>>>> import org.apache.kafka.clients.consumer.ConsumerConfig
>>>> import org.apache.kafka.clients.producer.ProducerConfig
>>>>
>>>> object StreamingJob {
>>>> def main(args: Array[String]) {
>>>>   val kafkaTopic = "source.kafka.topic"
>>>>   val jobName ="test"
>>>>   val parallelism =1
>>>>   val checkPointPath ="checkpoint/"
>>>>   val kafkaBrokers =""
>>>>
>>>>   // set up the streaming execution environment
>>>>   val env = StreamExecutionEnvironment.getExecutionEnvironment
>>>>   env.setParallelism(parallelism)
>>>>   env.enableCheckpointing(10000)
>>>>   env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
>>>>   env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
>>>>   env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
>>>>   //env.setStateBackend(new FsStateBackend(checkPointPath))
>>>>
>>>>
>>>>   val tableEnv = StreamTableEnvironment.create(env)
>>>>
>>>>
>>>> 提示有多个实现:
>>>>
>>>> 下面是pom文件:
>>>>
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-scala_${scala.binary.version}</artifactId>
>>>>  <version>${flink.version}</version>
>>>>  <scope>compile</scope>
>>>> </dependency>
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
>>>>  <version>${flink.version}</version>
>>>>  <scope>compile</scope>
>>>> </dependency>
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
>>>>  <version>${flink.version}</version>
>>>>  <scope>provided</scope>
>>>> </dependency>
>>>> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink <https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime-blink> -->
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-table-runtime-blink_2.11</artifactId>
>>>>  <version>1.9.0</version>
>>>> </dependency>
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-connector-kafka_2.11</artifactId>
>>>>  <version>1.9.0</version>
>>>> </dependency>
>>>> <dependency>
>>>>  <groupId>org.apache.flink</groupId>
>>>>  <artifactId>flink-table-common</artifactId>
>>>>  <version>${flink.version}</version>
>>>>  <scope>provided</scope>
>>>> </dependency>
>>>>
>>>>
>>>>
>>>>
>>
>