flink sql 通过group by 滑窗计算的结果sink到kafka后有重复数据

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

flink sql 通过group by 滑窗计算的结果sink到kafka后有重复数据

dpzhoufengdev
flink sql 通过group by 滑窗计算的结果sink到kafka后有重复数据,每条数据都有两条完全一样的数据。这个是什么原因导致的?
聚合计算的逻辑

Table tableoneHour = tableEnv.sqlQuery(

                "select  appname" +

                        ",productCode" +

                        ",link" +

                         ",count(case when nodeName = 'FailTerminateEndEvent' then 1 else null end) as errNum" +

                        ",count(case when nodeName = 'EndEvent' and passStatus = 'Accept' then 1 else null end ) as passNum " +

                        ",count(case when nodeName = 'EndEvent' and passStatus = 'Reject' then 1 else null end) as refNum " +

                        ",count(case when nodeName = 'EndEvent' and passStatus <> 'Reject' and passStatus <> 'Accept' then 1 else null end) as processNum " +

                        ",sum(case when nodeName = 'EndEvent' then loansum else 0 end ) as loansum" +

                        ",count(1) as allNum " +

                        ",'OneHour' as windowType " +

                        ",HOP_END(rowtime, INTERVAL '1'  HOUR, INTERVAL '1' HOUR) as inputtime " +

                        "from  table1_2 WHERE link in ('1','2','5')  GROUP BY HOP(rowtime, INTERVAL '1' HOUR, INTERVAL '1' HOUR) " +

                        ",appname,productCode,link");


将table转成dataStream


//计算的多张表union到一起
        Table tablesql = tableHalfHour.unionAll(tableoneHour).unionAll(tableoneDay);
        DataStream<Tuple2<Boolean, Row>> dataStream2 = tableEnv.toRetractStream(tablesql,Row.class);
        DataStream<Tuple2<Boolean, Row>> dataStream7Day = tableEnv.toRetractStream(table7Day,Row.class);


        //将Table转成dataStream
        DataStream<String> reslut1 = dataStream2.map(new MapFunction<Tuple2<Boolean, Row>, String>() {
            @Override
            public String map(Tuple2<Boolean, Row> tuple2) throws Exception {
                Map<String, Object> json = new HashMap<>();
                json.put("appname",tuple2.f1.getField(0));
                json.put("productCode", tuple2.f1.getField(1));
                json.put("link",tuple2.f1.getField(2));
                json.put("errNum",tuple2.f1.getField(3));
                json.put("passNum",tuple2.f1.getField(4));
                json.put("refNum",tuple2.f1.getField(5));
                json.put("processNum",tuple2.f1.getField(6));
                json.put("loansum",tuple2.f1.getField(7));
                json.put("allNum",tuple2.f1.getField(8));
                json.put("windowType",tuple2.f1.getField(9));
                json.put("inputtime",tuple2.f1.getField(10));
                return JSON.toJSONString(json);
            }
        });






将结果sink到kafka中
reslut1.addSink(new FlinkKafkaProducer08<>("********",new SimpleStringSchema(),props1));
         reslut2.addSink(new FlinkKafkaProducer08<>("********",new SimpleStringSchema(),props1));


sink到kafka的数据存在两条完全一样的数据




| |
dpzhoufengdev
|
|
[hidden email]
|
签名由网易邮箱大师定制