hi、
我这面使用flink1.9的Blink sql完成数据转换操作,但遇到如下问题: 1、使用row_number函数丢失主键 2、row_number函数和时态表关联联合使用程序吞吐量严重降低,对应sql如下: // 理论上这里面是不需要 distinct的,但sql中的主键blink提取不出来导致校验不通过,所以加了一个 SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd HH:mm:ss') as etl_time FROM (select id,...,proctime from (select data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY data.index0.id ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where rowNum<=1) t1 left join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF t1.proctime t2 on t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR SYSTEM_TIME AS OF t1.proctime t4 ON t1.so_id =t4.ID 上面的sql吞吐率很低,每秒就处理几条数据,而下面两种情况分开跑,吞吐量都能达标,仅时态表关联能到到几千条,仅rownumber能达到几万条,但不知道为什么他们俩联合后就只有几条了 SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd HH:mm:ss') as etl_time FROM (select id,...,proctime from (select data.index0.id,...,proctime from installmentdb_t_line_item)tmp ) t1 left join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF t1.proctime t2 on t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR SYSTEM_TIME AS OF t1.proctime t4 ON t1.so_id =t4.ID SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd HH:mm:ss') as etl_time FROM (select id,...,proctime from (select data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY data.index0.id ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where rowNum<=1) t1 |
Hi,
你用的是什么state backend呢?看你的情况很有可能跟这个有关系。比如用的是rocksdb,然后是普通磁盘的话,很容易遇到IO瓶颈。 宇张 <[hidden email]> 于2020年5月11日周一 上午11:14写道: > hi、 > 我这面使用flink1.9的Blink sql完成数据转换操作,但遇到如下问题: > 1、使用row_number函数丢失主键 > 2、row_number函数和时态表关联联合使用程序吞吐量严重降低,对应sql如下: > // 理论上这里面是不需要 distinct的,但sql中的主键blink提取不出来导致校验不通过,所以加了一个 > SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY data.index0.id > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > rowNum<=1) t1 left join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF > t1.proctime t2 on t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR > SYSTEM_TIME AS OF t1.proctime t4 ON t1.so_id =t4.ID > > 上面的sql吞吐率很低,每秒就处理几条数据,而下面两种情况分开跑,吞吐量都能达标,仅时态表关联能到到几千条,仅rownumber能达到几万条,但不知道为什么他们俩联合后就只有几条了 > > SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > data.index0.id,...,proctime from installmentdb_t_line_item)tmp ) t1 left > join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF t1.proctime t2 on > t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR SYSTEM_TIME AS OF > t1.proctime t4 ON t1.so_id =t4.ID > > SELECT distinct t1.id as order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY data.index0.id > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > rowNum<=1) t1 > -- Benchao Li School of Electronics Engineering and Computer Science, Peking University Tel:+86-15650713730 Email: [hidden email]; [hidden email] |
hi、
我这面state backend用的是FsStateBackend,状态保存在hdfs On Mon, May 11, 2020 at 11:19 AM Benchao Li <[hidden email]> wrote: > Hi, > > 你用的是什么state backend呢?看你的情况很有可能跟这个有关系。比如用的是rocksdb,然后是普通磁盘的话,很容易遇到IO瓶颈。 > > 宇张 <[hidden email]> 于2020年5月11日周一 上午11:14写道: > > > hi、 > > 我这面使用flink1.9的Blink sql完成数据转换操作,但遇到如下问题: > > 1、使用row_number函数丢失主键 > > 2、row_number函数和时态表关联联合使用程序吞吐量严重降低,对应sql如下: > > // 理论上这里面是不需要 distinct的,但sql中的主键blink提取不出来导致校验不通过,所以加了一个 > > SELECT distinct t1.id as > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY > data.index0.id > > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > > rowNum<=1) t1 left join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF > > t1.proctime t2 on t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR > > SYSTEM_TIME AS OF t1.proctime t4 ON t1.so_id =t4.ID > > > > > 上面的sql吞吐率很低,每秒就处理几条数据,而下面两种情况分开跑,吞吐量都能达标,仅时态表关联能到到几千条,仅rownumber能达到几万条,但不知道为什么他们俩联合后就只有几条了 > > > > SELECT distinct t1.id as > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > data.index0.id,...,proctime from installmentdb_t_line_item)tmp ) t1 left > > join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF t1.proctime t2 on > > t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR SYSTEM_TIME AS OF > > t1.proctime t4 ON t1.so_id =t4.ID > > > > SELECT distinct t1.id as > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY > data.index0.id > > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > > rowNum<=1) t1 > > > > > -- > > Benchao Li > School of Electronics Engineering and Computer Science, Peking University > Tel:+86-15650713730 > Email: [hidden email]; [hidden email] > |
Hi,
我觉得你可以多试几种方式,比如先关联再去重,测试一下性能呢?另外,去重的话,你这个业务逻辑是用es字段排序取最新,不能用procetime去重取最新吗?你的sql中rowNum<=1实际上生成的应该是Rank算子,不是Deduplication算子吧。我在业务中对订单类型的数据是这样用去重算子的,select * from (select *, row_number() over(partition by id order by proctime desc as rowNum from xxx) tmp where rowNum = 1,这样的语法才会转换去Deduplication算子。 > -----原始邮件----- > 发件人: "宇张" <[hidden email]> > 发送时间: 2020-05-11 11:40:37 (星期一) > 收件人: [hidden email] > 抄送: > 主题: Re: flink1.9 Blink sql 丢失主键+去重和时态表联合使用吞吐量低 > > hi、 > 我这面state backend用的是FsStateBackend,状态保存在hdfs > > On Mon, May 11, 2020 at 11:19 AM Benchao Li <[hidden email]> wrote: > > > Hi, > > > > 你用的是什么state backend呢?看你的情况很有可能跟这个有关系。比如用的是rocksdb,然后是普通磁盘的话,很容易遇到IO瓶颈。 > > > > 宇张 <[hidden email]> 于2020年5月11日周一 上午11:14写道: > > > > > hi、 > > > 我这面使用flink1.9的Blink sql完成数据转换操作,但遇到如下问题: > > > 1、使用row_number函数丢失主键 > > > 2、row_number函数和时态表关联联合使用程序吞吐量严重降低,对应sql如下: > > > // 理论上这里面是不需要 distinct的,但sql中的主键blink提取不出来导致校验不通过,所以加了一个 > > > SELECT distinct t1.id as > > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY > > data.index0.id > > > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > > > rowNum<=1) t1 left join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF > > > t1.proctime t2 on t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR > > > SYSTEM_TIME AS OF t1.proctime t4 ON t1.so_id =t4.ID > > > > > > > > 上面的sql吞吐率很低,每秒就处理几条数据,而下面两种情况分开跑,吞吐量都能达标,仅时态表关联能到到几千条,仅rownumber能达到几万条,但不知道为什么他们俩联合后就只有几条了 > > > > > > SELECT distinct t1.id as > > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > > data.index0.id,...,proctime from installmentdb_t_line_item)tmp ) t1 left > > > join SNAP_T_OPEN_PAY_ORDER FOR SYSTEM_TIME AS OF t1.proctime t2 on > > > t2.LI_ID= t1.id left join SNAP_T_SALES_ORDER FOR SYSTEM_TIME AS OF > > > t1.proctime t4 ON t1.so_id =t4.ID > > > > > > SELECT distinct t1.id as > > order_id,...,DATE_FORMAT(t1.proctime,'yyyy-MM-dd > > > HH:mm:ss') as etl_time FROM (select id,...,proctime from (select > > > data.index0.id,...,proctime,ROW_NUMBER() OVER (PARTITION BY > > data.index0.id > > > ORDER BY es desc) AS rowNum from installmentdb_t_line_item)tmp where > > > rowNum<=1) t1 > > > > > > > > > -- > > > > Benchao Li > > School of Electronics Engineering and Computer Science, Peking University > > Tel:+86-15650713730 > > Email: [hidden email]; [hidden email] > > ------------------------------ 刘大龙 浙江大学 控制系 智能系统与控制研究所 工控新楼217 地址:浙江省杭州市浙大路38号浙江大学玉泉校区 Tel:18867547281 |
Free forum by Nabble | Edit this page |